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Abstract. The aim of this investigation was to develop and evaluate freeze-dried mannosylated liposomes
for the targeted delivery of selenium. Dipalmitoylphosphatidylcholine, distearoylphosphatidylglycerol,
and cholesterol were dissolved in a chloroform and methanol mixture and allowed to form a thin film
within a rotatory evaporator. This thin film was hydrated with a sodium selenite (5.8 μM) solution to form
multilamellar vesicles and homogenized under high pressure to yield unilamellar nanoliposomes. Se-
loaded nanoliposomes were mannosylated by 0.1%w/v mannosamine (Man-Lip-Se) prior to being lyoph-
ilized. Mannosamine concentration was optimized with cellular uptake studies in M receptor expressing
cells. Non-lyophilized and lyophilized Man-Lip-Se were characterized for size, zeta potential, and entrap-
ment efficiency. The influence of liposomal composition on the characteristics of Man-Lip-Se were
evaluated using acidic and basic medium for 24 h. Thermal analysis and powder X-ray diffraction were
used to determine the interaction of components within the Man-Lip-Se. The size, zeta potential and
entrapment efficiency of the optimumMan-Lip-Se were observed to be 158±28.9 nm, 33.21±0.89 mV, and
77.27±2.34%, respectively. An in vitro Se release of 70–75% up to 24 h in PBS pH 6.8 and <8% Se release
in acidic media (0.1 N HCl) in 1 h was observed. The Man-Lip-Se were found to withstand gastric-like
environments and showed sustained release. Stable freeze-dried Man-Lip-Se were successfully formulated
with a size of <200 nm,∼75% entrapment, and achieved controlled release of Se with stability under acidic
media, which may be of importance in the targeted delivery of Se to the immune system.
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INTRODUCTION

Selenium (Se) is an essential nutritional trace element that
impacts various aspects of human health (1–4). A number of
epidemiological studies have reported that asthma incidence,
prevalence, and/or severity are associatedwith reduced Se status
(5–14). However, some of the studies were not able to establish
the role of selenium (15,16). Nonetheless, epidemiological stud-
ies suggest that Se has beneficial immunomodulatory properties
and Se supplementation may reduce allergic asthma (17–21). In
our previous studies, oral Se supplementation was found to
change immune responses from Th2-type to Th1/Treg-types,
which modulates levels of asthma in mice (22,23). Se adminis-
tration increased glutathione peroxidase in lung tissue and

inhibited the generation of hydrogen peroxide and the activa-
tion of nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) induced by tumor necrosis factor-alpha (TNF-α),
which may represent a major anti-inflammatory mechanism by
which Se attenuates asthma (24).

Current Se supplementation approaches are not consis-
tently effective at lowering allergic asthma in humans (25–
27). In addition, there is emerging concern with off-target or
adverse effects of long-term oral Se supplementation that
includes possible increased risk of type-2 diabetes (28,29).
Therefore, there is an unmet need to develop new supple-
mentation approaches that selectively deliver Se to the im-
mune system and thereby minimize the risk associated with
whole body supplementation. Nanocarriers (NCs) have
emerged as a viable delivery method for site-specific deliv-
ery of therapeutic agents. In a past study, Se nanoparticles
prepared by adding bovine serum albumin to the redox
reaction system of selenite and glutathione, showed a lower
toxicity than Se compounds used in dietary supplementation
but retained a similar ability to upregulate selenoenzymes
(30,31). However, these Se nanoparticles have similar bio-
availability compared to that of conventional Se supple-
mentation and consequently they do not overcome the
associated adverse side effects. Therefore, there is unmet
need to develop targeted formulations which will specifically
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deliver Se to the immune system while sparing normal tissues
(31). NCs that preferentially shunt cargo to the immune
system would allow low dosages of Se while avoiding the
harmful side effects associated with conventional whole
body Se supplementation approaches.

Intestinal lymphatic regions have been routinely ex-
plored for site-specific lymphatic delivery of orally adminis-
tered proteins, drugs, and vaccines (32,33). The co-
administration of lipid vehicle-based NCs enhanced the stim-
ulation of chylomicron formation by enterocytes, which dis-
solve and assimilate lipophilic molecules into their nonpolar
core and thus promote drug absorption into intestinal lym-
phatics (34). Furthermore, the mannose receptors present on
the M cells overlying Peyer's patches represent an excellent
target for specific delivery (33,35,36). Mannosamine inter-
acts with mannose receptors present on M cells and has
the added advantage of being mucoadhesive, which fur-
ther promotes uptake by cells expressing the mannose
receptor (37).

Liposomes consist of one or more lipid bilayers,
encasing a hydrophilic core that contains the therapeutic
agent and are usually sized within the nanoparticle level
(38,39). Liposomes are versatile carriers due to their abil-
ity to function in aqueous solutions and they can be
modified to add moieties for targeting uptake by particu-
lar cell-types. Liposomes are the most studied colloidal
particle applied in medicine due to their biocompatibility
and biodegradability. The targeting of M cells overlying
Peyer's patches using NCs represents a promising delivery
option. The delivery of therapeutic agents to M cells may
be enhanced by using surface agents such as lectins, mi-
crobial adhesion molecules, and immunoglobulins that can
bind to M cell surfaces selectively (33). Therefore, we
have selected a mucoadhesive mannosamine to target the
mannose receptors present on M cells to enhance the
uptake of developed liposomes. In this investigation, we
have focused on formulation and characterization of
mannosamine-coated Se-loaded lipidic NCs (Man-Lip-Se).
We hypothesized that the formulation of mannosamine-
coated Se-loaded lipidic NCs (Man-Lip-Se) with critical
parameters of particle size <200 nm, zeta potential
>+10 mV, entrapment efficiency >60%, controlled release
and that the mannosamine coating will increase the cellu-
lar uptake of cargo through M cell receptor-mediated
endocytosis.

Therefore, the aims of this study were to formulate Se-
loaded Man-Lip-Se and evaluate the effect of its composition
on influencing parameters such as size, charge, entrapment
efficiency and Se release at physiological relevant acidic and
neutral media. The molecular characteristics of encapsulated
Se within mannosylated nanoliposome using differential
scanning calorimetry (DSC) and X-ray diffraction (XRD)
techniques was also evaluated and reported herein. In addi-
tion, we have evaluated the cellular uptake of Man-Lip-Se
using M receptor expressing MH-S macrophage cells. The
deficiency of selenium in macrophage cells has been linked
to asthma (40). For this investigation, we have used sodium
selenite as the dietary source of Se. To the best of our
knowledge, till date, this is the only literature explaining
the development and evaluation of freeze-dried targeted
mannosylated nanoliposomal formulation of Se.

MATERIALS AND METHODS

Materials

Dipalmitoyl phosphatidylcholine (DPPC) and distearoyl
phosphatidyl glycerol (DSPG) were received as gift samples
from Lipoid, Ludwigshafen, Germany. Sodium selenite, choles-
terol (Chol), D-mannosamine HCl, ethylenediamine tetraacetic
acid (EDTA), 2,3-diaminonapthalene (DAN), methanol, chloro-
form, dimethyl sulfoxide (DMSO),O-phthalaldehyde, potassium
hydroxide, and boric acid were purchased from VWR Interna-
tional (Radnor, PA, USA). Spectra/Por Dialysis membrane
(molecular weight cut off 25,000 Da) was obtained from Spec-
trum Laboratories Inc. (Rancho Dominguez, CA, USA). All
chemicals used were of analytical grade. Deionized, 0.22 μm
filtered sterile water was used throughout the experiments.

Preparation of Selenium-Loaded Nanoliposomes

Lip-Se were composed of DPPC, DSPG, and Chol and
prepared using the thin film evaporation technique by using
reported methods with slight variations (41–43). Lip-Se I,
Lip-Se II, Man-Lip-Se I, and Man-Lip-Se II formulations
were prepared as described in Fig. 1 and compositions are
listed in Table I. These nanoliposome formulations were
prepared in order to obtain a controlled release of Se
and the mannosamine coating was optimized for cellular
uptake. Briefly, DPPC (44 mg), DSPG (15.64 mg), Chol
(14 or 17 mg) were dissolved in a mixture of chloroform/
methanol (3:1) in 250 mL round-bottomed flask and
subjected to dry thin formation in a Rotary evaporator
(Heidolph, Schwabach, Germany) using a round-bottomed flask
with rotation speed of 100 rpm for 4 h under 200±5 mmHg at a
temperature of 55±2°C. The resultant thin filmwas hydratedwith
distilledwater containing sodium selenite (1mg/mL)with a rotary
evaporator at 55±2°C for 45±1 min. The multilamellar vesicles
formed were then passed through a high-pressure Nano DeBEE
homogenizer (BEE International, South Easton, MA, USA) at
1000 psi for 1 cycle at 55°C. The HEPES buffer was added to this
Lip-Se suspension and then centrifugation was performed using
Vivaspin 500 centrifuge tubes with a filter of molecular cutoff
weight of 10,000 Da (Viva Products, Inc., Littleton, MA, USA)
at 16,200×g for 20 min and the Lip-Se pellet was collected for
further preparation of Man-Lip-Se. The entrapped and
unentrapped Se was determined by spectrophotometric analysis
using Lip-Se pellets and the aqueous phase collected at the
bottom of Vivaspin filter membrane respectively (44).

Preparation of Mannosamine-Coated Nanoliposomes

The mannosamine concentration of 0.1%w/v was selected
to coat on the surface of nanoliposome based on maximum
uptake of nanoliposomal in M receptor positive MH-S mouse
alveolar cells as described below. The Lip-Se suspension (as
described above) was incubated with 30 ml (0.1%w/v)
mannosamine for 1 h at 25°C to form Man-Lip-Se. After incu-
bation, the liposomes were centrifuged with HEPES buffer
using Vivaspin ultracentrifuge tubes with filter membranes with
molecular cut off weight of 10,000 Da (Viva Products, Inc.,
Littleton, MA, USA) at 16,200×g for 30 min and the Man-Lip-
Se pellet and aqueous filtrate was collected for further
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evaluation. The aqueous filtrate was quantified for unbound
mannosamine usingO-phthalaldehyde fluorimetric assay as de-
scribed previously (45,46). The 1%w/v lactose monohydrate
was used as a cyroprotectant and frozen to −80°C for 3 h. The
frozen Man-Lip-Se suspension was lyophilized for 48 h under
vacuum at <0.133 mbar at −84°C using Freeze one 12 Plus
Lyophilizer (Labconco, Kansas City, MO, USA). The
nanoliposome formulation suspension was prepared by
resuspending the lyophilized formulation in deionized water for

in vitro characterization. The formulation will be administered as
a suspension via the oral route of administration. In our ongoing
asthma mouse model studies, we will use the nanoliposome sus-
pension formulation administered via oral route by gavage.

Particle Size and Zeta Potential Measurement

The particle size of the prepared nanoliposome was de-
termined by dynamic light scattering using a NICOMP ZLS

Fig. 1. Preparation procedure for Lip-Se liposomes. TheDPPC,DSPGandChol were dissolved in a chloroform andmethanolmixture and allowed to
form a thin film by rotoevaporation. The thin film was hydrated with distilled water containing 2 mg sodium selenite for 0.5 h to form multilamelllar
vesicles followed by high-pressure homogenization. The Lip-Se suspensions were lyophilized using lactose monohydrate as a cryoprotectant

Table I. Composition of Prepared Lip-Se I and II Liposomes. Man-Lip-Se I and II were Prepared with the Same Corresponding Lip-Se I and II
Formulations, but with the Inclusion of the Addition of the Mannosamine Conjugation Step that is described in the “MATERIALS AND

METHODS” Section

Man-Lip-Se I Man-Lip-Se II

Lipids DPPC (mg) 44 44
Chol (mg) 14 17
DSPG (mg) 15.6 15.6

Organic Chloroform (ml) 6 6
Solvent
Mixture MeOH (ml) 2 2
Hydration medium 1 M NaSe (μl) 11.6 11.6

DI H2O (ml) qs 6 qs 6
Additional preparation

methods
Homogenization, Lip-Se I was

conjugated with mannosamine
to form Man-Lip-Se
I, Lyophilization

Homogenization, Lip-Se II
was conjugated with mannosamine
to form Man-Lip-Se II,
Lyophilization
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380 analyzer (PSS-NICOMP, Santa Barbara, USA). The par-
ticle size and zeta potential of the nanoliposomes were
assessed by dispersion in deionized sterile water. The zeta
potential was calculated by Smoluchowski's equation from
the electrophoretic mobility of the nanoliposomes at 25°C.
All measurements were recorded in triplicate (n=3).

Determination of the Extent of Mannosamine Coating

After resultant Man-Lip-Se suspension was centrifuged
using Vivaspin and the aqueous filtrate was collected for
further analysis of mannosamine content as described above.
The unbound mannosamine was quantified using the collected
aqueous filtrate using theO-phthalaldehyde fluorimetric assay
(36). Mannosamine concentrations ranging from 5 to 100 μg/
mL in distilled water were prepared for the development of a
calibration curve. Then, 50 μl of test samples and standards
were added to 150 μl of O-phthalaldehyde reagent in a 96-
microwell plate. Two minutes after sample preparation, absor-
bance was determined at 340 nm using a Synergy H1 Hybrid
plate reader for UV spectrophotometric analysis (BioTek In-
struments, Inc., Winooski, VT, USA).

Nile Red-Loaded Liposomal Uptake of M receptor Positive
MH-S Mouse Alveolar Cells

Nile red (NR) fluorescent dye-loaded Lip (Lip-NR) and
Man-Lip-NR (Man-Lip-NR) were prepared by incorporating
NR in the hydration medium and adding the solution to the
thin film following similar methods used in the preparation of
Man-Lip-Se. Various concentrations of mannosamine (0.05,
0.1, 0.3%w/v) were used to formulate the Man-Lip-NR. The
MH-S cells were plated at 2,000 cells/well in a 96-well plate.
The macrophages were incubated with 100 μL Lip-NR, Man-
Lip-NR, Man-Lip-Se (negative control), and with NR solution
dispersed in PBS and serum-free RPMI 1640 medium
supplemented with 0.05 mM β-mercaptoethanol. The NR
solution dispersed in serum-free RPMI medium and the
Man-Lip-Se without NR were used as the positive and nega-
tive controls, respectively. At each image capture at 0.5, 15, 30,
60 min, the liposomal suspension and medium were removed
and preserved in a sterile 96-well plate and the cells were
washed with sterile DPBS to remove any traces of free NR.
The cellular uptake of the Man-Lip-NR in mouse alveolar
MH-S macrophages was investigated with fluorescence mi-
croscopy using a Zeiss Axiovert 40CFL microscope (Carl
Zeiss Microscopy, LLC, USA). The fluorescent light source
was an Exfo X-Cite series 120 (Lumen Dynamics Group, Inc.,
Mississauga, Ontario, Canada).

Se Analysis Assay

UV spectrophotometry was used for the analysis of Se, in
a process where Se(VI) reacted with DAN to form a fluores-
cent Se-DAN heterocyclic compound as described previously
(47,48). The addition of 2 mL 0.05 M EDTA and 2 mL 0.1%
DAN to the Se solution facilitated the formation of piazselenol.
The tube was incubated at 70°C for 30 min and then the
piazselenol was extracted with 4 mL cyclohexane. The absor-
bance in the cyclohexane layer was measured at a wavelength of
378 nm using a Synergy H1 Hybrid plate reader for UV

spectrophotometric analysis (BioTek Instruments, Inc., Winoo-
ski, VT, USA). The data was analyzed with Gen5™ 2.0 Data
Analysis Software (BioTek Instruments, Inc., Winooski, VT,
USA). The calibration curve of Se was prepared during each
assay in standards with concentrations from 0 to 10 μg/mL. The
correlation coefficient was consistently more than 0.99, and a
detection limit of quantification was 0.5 μg/mL.

Determination of Entrapment Efficiency

For Se assay, 0.1 mL of the Lip-Se or Man-Lip-Se was
dissolved in 0.2 mL each of methanol and DMSO (1:1) and
subsequent dilutions were made with double distilled water.
Prior to UVanalysis, samples were centrifuged at 16,200×g for
10 min and the supernatant was analyzed for Se content.
Entrapment efficiency was determined using Vivaspin500 ul-
tracentrifuge filters with molecular cut off weight of 10,000 Da
(Viva Products, Inc., Littleton, MA, USA). Briefly, the Lip-Se
or Man-Lip-Se (0.1 mL) formulation was placed on top of the
Vivaspin filter membrane (molecular weight cutoff 10,000 Da)
and centrifuged at 16,200×g for 10 min. The aqueous filtrate
was diluted appropriately and subjected to UV spectrophoto-
metric analysis to determine the Se content. The entrapment
efficiency (EE) of the Se within developed formulations were
defined as the drug content that was entrapped into
nanoliposomes, and calculated by using following equation.

EE %ð Þ ¼ Totaldrug−Freeseleniteamount
Totaldrug

� 100 ð1Þ

In vitro Release of Se from Man-Lip-Se

In vitro release study of Se from various Man-Lip-Se was
carried out in phosphate buffer saline (PBS) pH 6.8 and 0.1 N
HCl solution pH 3.0 to simulate intestinal and gastric condi-
tions, respectively. In addition, the in vitro release of Se from
Man-Lip-Se II was also conducted in 0.1 N HCl for 2 h and
then the medium was changed to PBS pH 6.8 to simulate
gastric and intestinal conditions in vivo. Lyophilized Man-
Lip-Se were re-suspended in PBS solution and placed in a
dialysis membrane bag with molecular weight cutoff of
10,000 Da. The membrane bags were placed in 50 ml of PBS
pH 6.8 or 0.1 N HCl solution pH 3.0 medium to simulate sink
conditions. The entire system was maintained at 37°C with
continuous stirring at approximately 300 rpm. At specific time
intervals (0.5, 1, 2, 3, 4, 5, 6, 7, 24 h), 0.5 mL of dissolution
medium was collected and 0.5 mL of fresh respective disso-
lution medium was replaced. For the simulation of gastric
and intestinal pH during the release studies, membrane bags
containing nanoliposomes were placed in 50 ml of 0.1 HCl
and samples were taken as described above at time points of
0, 0.5, 1, and 2 h. Then the membrane bags containing
nanoliposomes were transferred to 50 mL of PBS pH 6.8
and samples were taken as described above at the time
points of 3, 4, 5, 6, 7, and 24 h. The samples were analyzed
at each time interval using the established UV spectropho-
tometric method and the time versus percent Se release was
plotted to evaluate the release profile of developed formu-
lations (Fig. 2).
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Molecular Interaction Evaluation using Differential Scanning
Calorimetry

The interaction of Se with lipids and the association of Se
within the Man-Lip-Se were evaluated using a DSC (DSC1,
METTLER TOLEDO, Columbus, OH, USA). Approximate-
ly 2 mg of the Man-Lip-Se, unprocessed physical mixture of
excipients and sodium selenite, individual excipient or sodium
selenite alone were weighed into an aluminum pan and her-
metically sealed, and the thermal behavior was determined in
the range of −60°C to 225°C at a heating rate of 10°C min−1.
Baselines were determined using an empty pan, and all
the thermograms were corrected for baseline. Transition
temperatures were determined from the endothermic peak
minima while transition enthalpies were obtained by
integration of the endothermic transitions using linear
baselines.

Molecular Interaction Evaluation using X-ray Diffraction
Analysis

X-ray diffraction measurements of sodium selenite, ly-
ophilized physical mixture of formulation constituents, lyoph-
ilized placebo Man-Lip (P-Man-Lip), and lyophilized Man-
Lip-Se II were carried out with a powder XRD instrument, a
Bruker D8 Advance (AXS GmbH, Karlsruhe, Germany) in
the diffraction range of 5–40°. The PXRD diffraction instru-
ment was equipped with a vertical goniometer in a Bragg–
Brentano geometry (θ/2θ). The signal was conditioned using a
Gobel mirror and collected using a LYNXEYE linear detector.

A Cu-Kα radiation source was used, and the scanning (2θ)
rate was 5°/min. Approximately 0.25 g of powder sample
was filled into a glass sample holder and gently pressed
down by a glass slide to make the sample surface and holder
surface coplanar. The X-ray powder diffraction patterns of
various formulations were analyzed for crystalline or amor-
phous characteristics.

Statistical Analysis

The experiments were conducted in triplicate with data
reported as mean±standard deviation. Experimental statistics
were performed using Minitab 16 Statistical Software (State
College, PA, USA). A one-way analysis of variance (ANOVA)
with Tukey's multiple comparison post-test was used in the
analysis of differences between the physicochemical properties
of nanoparticles with and without mannosamine conjugation.
The least significant difference post-hoc ANOVA analysis
was used in the comparison of particle sizes between Lip-
Se and Man-Lip-Se formulations. The significance level was
set at p<0.05.

RESULTS AND DISCUSSION

Asthma is a chronic disease in the USA and despite
continued advances in asthma therapies, the clinical outcome
remains poor (49). The immunomodulatory properties and
effective therapeutic potential of Se for the treatment of asth-
ma has drawn attention of researchers in recent years
(2,50,51). However, available dietary Se supplements mainly
consist of two inorganic forms, sodium selenate and sodium
selenite, and one organic form, selenomethionine. Moreover,
many studies reported that 50–90% of consumed selenite was
lost and excreted in urine due to the short retention time in
the gastrointestinal tract (52–54). It has been also evidenced
that high dose supplementation of selenite may cause various
adverse effects due to its pro-oxidant property, which depends
on the concentration and other factors (55). Additionally,
there is an emerging concern with potential adverse side ef-
fects of long-term oral Se supplementation methods that in-
cludes possible increased risk of type-2 diabetes (29).
Therefore, providing efficient and safe application of dietary
Se supplementation has become a challenging topic in recent
years. Hence, we envisioned that the development of targeted
Man-Lip-Se may prove as an efficacious and safe therapeutic
modality compared to conventional long-term Se supplemen-
tation. Membranous epithelial cells termed micro fold cells (M
cells) within the gastrointestinal tract are located within
Peyer's patches (56–59). The M cells have a high transcytotic
capacity and are capable of particulate transport of a number
of materials directly to lymphoid follicles (60). A method of
enhancing particle absorption within M cells is to attach
mannosamine to the surface of the particles so that they can
interact specifically with mannose receptor via receptor-medi-
ated endocytotic mechanisms on the M cell apical membranes
(33,61,62). Development of the nano-delivery system of Se
compounds may improve delivery of Se directly to immune
system to achieve desired effect using lower doses thereby
limiting toxicities to normal tissues.

Unilammellar liposomes contain lipid bilayers that are
able to encapsulate both hydrophobic and hydrophilic

Fig. 2. a In vitro release data for the Man-Lip-Se formulation I and II
in media of pH 3.0 for 0–2 h and pH 6.8 for 2–24 h. b In vitro release
data for the Man-Lip-Se formulations I and II and selenium solution
in media of pH 3.0 and pH 6.8
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therapeutic agents (63). Liposomes have the ability to trans-
port therapeutic agents and dietary supplements through oral
administration (64). The liposome preparation method should
be chosen with the following parameters in mind: the physi-
cochemical characteristics of the therapeutic agent, the char-
acteristics of the dispersant medium, the concentration of the
therapeutic agent, additional processes involved in the de-
livery of the liposomes, size, polydispersity and stability,
and batch-to-batch reproducibility (65–67). Nanoliposomes
are formed when sufficient energy is put into a system by
forming the phospholipid bilayers (68). The use of sonica-
tion method has been limited due to lower entrapment
efficiency or degradation of therapeutic agent (69,70). Sim-
ilarly, we have also observed lower entrapment efficiency
with the sonication method [data not shown]. The Mozafari
method and the extrusion method of liposome preparation
require specialized equipment and form larger sized lipo-
somes respectively (71). We have selected a simple repro-
ducible thin film hydration method to form multilamellar
vesicles that were passed through high-pressure homogeniz-
er to form unimellar nanoliposomes.

We have selected DPPC and DSPG, which are saturated
phospholipids, to develop the Se-loaded nanoliposomal formu-
lations owing to their stability advantages over unsaturated
phospholipids (72,73). The Chol has been used to provide a
sustained release profile and increase stability of the Man-Lip-
Se (74,75). The nanoliposomes were formulated using thin film
hydration technique as described within Fig. 1 and Table I.

The mean particle size (n=3) of various nanoliposomal
formulations are shown in Table II. The Lip-Se I and II were
found to be 148±68.7 and 154±23.0 nm, respectively. The mean
particle size of Man-Lip-Se I and II were found to be 156±73.4
and 158±28.9 nm, respectively (Table II). The polydispersity
index values of 0.36 and 0.05 were observed with Man-Lip-Se I
and Man-Lip-Se II, respectively. The zeta potential of Lip-Se I
and II were correspondingly −54.7±4.07 mV and −23.4±
1.58 mV, respectively. The zeta potential of Man-Lip-Se I was
26.1±1.95 mV and Man-Lip-Se II was observed to be 33.2±
0.89 mV. The lyophilized Man-Lip-Se II that had been
reconstituted with sterile purified water were found to
have a particle size of 159±62.4 nm and a zeta potential
of 31.5±1.21 mV. The Man-Lip-Se II before and after
lyophilization did not differ significantly (p<0.05) in par-
ticle size or zeta potential suggesting that the processing
and storage methods, like lyophilization and storage at

room temperature, are not detrimental to the physico-
chemical and biological properties of the Man-Lip-Se for-
mulation (Table II).

The fate of any drug delivery system after in vivo admin-
istration mainly depends on its physicochemical properties in
relation to the body's physiological barriers (76–78). Physical
parameters such as size and zeta potential affects stability,
biodistribution, release pattern and cellular uptake of lipo-
somes both in vitro and in vivo (79). The determination of
encapsulation of Se within liposomes is also important for the
stability, dose calculation and prediction of efficacy. As shown
in Table II, the entrapment efficiency of Lip-Se I, Lip-Se II,
Man-Lip-Se I and Man-Lip-Se II were found to be >70%. The
entrapment efficiencies for Lip-Se I and Man-Lip-Se I were
73.0±2.49%, Lip-Se II and Man-Lip-Se II were 74.0±3.57%
and 77.3±2.34%, respectively.

As shown in Table II, the mean sizes for Man-Lip-Se
were higher compared to Lip-Se which suggests the increase
in size due to the mannosamine coating. The increase of
cholesterol from Lip-Se I to Lip-Se II and from Man-Lip-Se
I to Man-Lip-Se II led to an increase in size, surface charge,
and entrapment efficiency of these nanoliposomes. The ob-
served positive shift of zeta potential Man-Lip-Se compared to
Lip-Se is suggestive to successfully coating with mannosamine
on the surface of developed nanoliposomes (Table II). The
negative surface charge of the Lip-Se facilitates the conjuga-
tion of the protonated mannosamine at pH 7.0 by electrostatic
attraction. The nature of high surface charge (+27 to 50 mV)
in the Man-Lip-Se is likely to facilitate their absorption
through the gastrointestinal tract, due to the molecular attrac-
tive forces formed by an electrostatic interaction between
positively charge Man-Lip-Se and negatively charged mucosal
surfaces and binding to M cells within Peyer's patches. The
extent of coating of mannosamine on the surface of Man-Lip-
Se (per milligram) was calculated using unboundmannosamine.
The Man-Lip-Se was found to contain 20 μg of mannosamine/
mg of nanoliposomes. It is shown in Table II that Se could
considerably be entrapped into both Lip-Se and Man-Lip-Se,
where the entrapment efficiency (% EE) of >70% as calculated
using the Se assay standard curve equation y=6.044x with an R2

value equal to 0.992. Our results suggest that the developed
formulation exhibited acceptable size, surface charge and
entrapment efficiency. Similarly, Paliwal et al. reported that the
liposome of soya lecithin prepared using thin film hydration
technique were found to have a size and entrapment of 160.3±
10.2 nm and 72.8±6.5%, respectively (80).

The results of the Man-Lip-NR uptake in M receptor posi-
tiveMH-Smouse alveolar macrophages at 15min post treatment
are shown in Fig. 3. These results illustrate that the fluorescent
NR uptake reaches a peak at a mannosamine concentration of
0.1%w/v and further increase in the mannosamine concentration
of 0.3%w/v resulted in the saturation effect. Therefore, we have
selected the mannosamine concentration of 0.1%w/v to formu-
late the Man-Lip-Se formulations (Fig. 3). Images were taken at
the following time points 0, 5, 15, 30, and 60 min [see supplemen-
tary data Fig S1]. No morphological changes were observed in
the macrophages during the 1 h incubation period.

After evaluating the physiochemical properties of
nanoliposomes, in vitro release experiments were performed to
test the release of Se from developed formulations using pH 3.0

Table II. Particle Size, Zeta Potential and Entrapment Efficiency Mea-
surements for Lip-Se and Man-Lip-Se Formulations and Particle Size
and Zeta Potential for Man-Lip-Se II after Lyophilization and

Reconsitution

Nanoparticles
Particle
size (nm)

Zeta Potential
(mV) EE initial

Lip-Se I 148±68.7 −54.7±4.07 73.3±2.49%
Lip-Se II 154±23.0 −23.4±1.58 74.0±3.57%
Man-Lip-Se I 156±73.4 26.1±1.95 73.3±2.49%
Man-Lip-Se II 158±28.9 33.2±0.89 77.3±2.34%
Reconstituted Man-Lip-
Se II after lyophilization

159±62.4 31.5±1.21 99.5±2.46%a

aThe represented data is for the Se assay since the unentrapped Se
was removed before lyophilization
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and pH 6.8media (Fig. 3). Liposomal dosage forms allow for the
variation and retention control of drugs within physiological
conditions (81–83). There are many causes of biological desta-
bilization of liposomes to obtain a release of its contents. Tem-
perature- and pH-sensitive liposomes are reliant on an
environmental change that triggers the release of the therapeu-
tic agent (84,85). The lipid bilayer of the liposomemay fuse with
the lipid bilayers of cell membranes to deliver their hydrophilic
contents to the inside of a cell (86,87).

To simulate the intestinal and gastric environment after
oral administration, in vitro release was studied at two differ-
ent release media: PBS at pH 6.8 and 0.1 N HCl at pH 3.0. To
study the release of the nanoliposomal suspension within a
physiologically relevant medium, we have performed release
within 0.1 N HCl at pH 3.0 for 2 h at which point the medium
was changed to PBS at pH 6.8 for the later time points up to
24 h. The cumulative release of Se from Man-Lip-Se in pH 3.0
and pH 6.8 media to simulate the environment of the stomach
and small intestine were compared (Fig. 3). In vitro release of
Se from the Man-Lip-Se was evaluated using 50 mL of disso-
lution medium under sink conditions. As shown in Fig. 3a, the
Man-Lip-Se I and II show an initial burst release for the first
0–2 h with 29.8±6.1% at 2 h in pH 3.0 medium and a slower
sustained release between 2 and 24 h. As shown in Fig. 3b,
Man-Lip-Se I showed an initial burst release for the first 0–3 h
with 37.6±2.0% and 40±2.0% at 3 h in the pH 3.0 and pH 6.8
dissolution media, respectively. The Man-Lip-Se II showed a

slower rate of Se release compared to Man-Lip-Se I in both
pH 3.0 and pH 6.8 media. Man-Lip-Se I and Man-Lip-Se II
showed >80% and >70% release at 24 h in both the pH 3.0
and pH 6.8 media, respectively. The increase in cholesterol
between the Man-Lip-Se I and Man-Lip-Se II batches lead to
a decrease in initial burst rate, followed by a slower prolonged
release effect.

In contrast, the Se solution showed 100% release within
3 h in both pH 3.0 and pH 6.8 media. Our results showed that
the release pattern of the Man-Lip-Se illustrated that there
was no significant (p<0.05) differences in release behavior
compared to that of Lip-Se [data not shown]. The percentage
of Se release from developed nanoliposomes was relatively
faster in the presence of PBS pH 6.8 dissolution media com-
pared to the 0.1 N HCl pH 3.0 medium. Man-Lip-Se II showed
delayed release at all time points due to the presence of higher
concentration of cholesterol compared to Man-Lip-Se I
(Fig. 3). In addition, we have observed that use of lower
concentration of Chol within Man-Lip-Se I showed significant
(p<0.05) initial burst release in both medium [data not
shown]. Above all, it was important to prepare dispersion of
freeze dried liposomes with water to form a liposomal suspen-
sion; otherwise, the freeze dried liposomes powders would
stick to the dialysis bag, thus affecting drug release from the
liposomal suspension. The report by Chu et al. showed that the
dispersion of proliposomes is desirable compared to freeze
dried proliposomes for release studies (42).

The addition of cholesterol to liposomes is known to affect
the interaction of bilayers and bilayer stability. The crystallization
of hydrocarbon chains of saturated lipids can be hindered by the
use of Chol, leading to a gel state system (88). Virden and Birg
found that the increase in Chol concentration in unilamellar
DPPG based liposomes resulted in decreased aggregation (89).
Chol within a liposomal formulation has the potential to influence
the in vitro drug release properties. The amount of Chol within a
liposomal formulation is inversely proportional to the in vitro
release rates of encapsulated therapeutic agent (74). An optimized
liposomal drug delivery system should be stable under physiolog-
ical conditions, yet be permeable and capable of drug release to
the target site of action. Similar to our results, the incorporation of
cholesterol with a liposomal formulation produced retardation in
the release of doxorubicin and arabinofuranosyl cytidine (ara-C),
whereas, at a higher mole percent, a much larger release rate of
idarubicin was observed compared to cholesterol-free liposomes
(90–92). A study by Taira et al. showed that liposomes composed
of egg phosphatidylcholine and cholesterol were found to be most
stable within acidic gastric simulated media (pH 2) (93).

The observed sustained release of Se for 24 h from Man-
Lip-Se in the pH 3.0 and pH 6.8 medium suggests that the
nanoliposomes are stable at physiological pH, thus presenting
the feasibility of the developed nanoliposomes for the delivery
to the immune system. We have selected the Man-Lip-Se II for
further evaluation based on Se release <20% at 1 h in the
pH 3.0 and pH 6.8 media.

Differential scanning calorimetric thermal analysis can be
utilized to study the interactions between the molecules
forming the nanoliposome and may determine the incorpora-
tion of drugs within nanoparticles through the examination of
enthalpy changes (44,94,95). DSC is a thermoanalysis method
for measuring the temperature and heat flow associated with

Fig. 3. Cell uptake of the Lip-NR and Man-Lip-NR at varying con-
centrations of mannosamine coating in M receptor positive mouse
alveolar MH-S macrophages shown by fluorescence microscopy. Im-
ages were captured at a magnification of 40× using a three-position
reflector slider P&C engaged in the red filter position. The scale bars
are equal to 20 μm
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transitions in materials as a function of time. Results from
DSC can provide information on the endothermic or exother-
mic phenomena that occurs due to physical and chemical
changes or changes in heat capacity (96). For lipid dispersions,
such as liposomes, DSC is a method of characterization of the
matrix state, consisting of polymorphism and drug entrapment
and component interactions. Nanoliposomes have DSC char-
acteristics that are unique from bulk materials, such as: de-
creased melting points, different melting points and enthalpies
based on lipid polymorphism, and endotherm broadening due
to multiple lipid components and size differences (97).

After evaluating the release behavior of the developed for-
mulations, we have evaluated the thermal and powder diffraction
characteristics using DSC and XRD. DSC was carried on lyoph-
ilized samples of physical mixture of excipients, P-Man-Lip, and
Man-Lip-Se II to evaluate the interaction of Se with lipids in
physical mixture and nanoliposome formulation and the entrap-
ment of Se inside the nanoliposomes in molecular dispersion
form. The results of DSC studies are represented in Fig. 4. The
thermogramof sodium selenite (Fig. 4) showed a broad endotherm
at 99.33°C, whereas physical mixture form of the sodium selenite
showed a shorter endotherm shifted to approximately 130°C and
another endotherm at approximately 145°C due to additives within
the physical mixture. Interestingly, the thermogram for the Man-

Lip-Se II showed an absence of corresponding endotherm for
sodium selenite at 99.33°C or 130°C (Fig. 4). The thermograms
for the Man-Lip-Se II show an endotherm peaks at approxi-
mately 190°C. The individual excipients were also analyzed by
DSC [see supplementary data Fig S2A–H]. The following melt-
ing point onsets and peaks were obtained for the individual
excipients: Lactose monohydrate had a melting onset tempera-
ture of 211.92°C and peak of 217.33°C, Cholesterol had a
melting onset of 136.03°C and peak of 140.83°C, DPPC had
a melting onset of 60.55°C and peak 63.50°C, D-mannosamine
hydrochloride had a melting onset temperature of 167.09°C and
peak of 173.17°C.

The data illustrate that theMan-Lip-Se composed of DPPC,
DSPG and Chol resulted in the broadening of the endothermic
peak compared to the individual lipid component thermograms
alone (Figs. 4 and 5, supplementary data). Similar findings were
found in a study by Aburahma and Abdelbary where DSC was
performed on a physical mixture of lipids, individual components,
and proliposomes (98). The thermogram of Man-Lip-Se
displayed slight narrowing and shifting of the melting endo-
therm due to the unique molecular interaction within the
nanoliposomes. These results demonstrated that the Man-Lip-
Se were not a physical mixture of their untreated components
which is suggestive of encapsulation of Sewithin nanoliposomes.

Fig. 4. DSC thermograms for lyophilized sodium selenite (a) and lyophilized physical
mixture of formulation constituents, lyophilized P-Man-Lip, and lyophilized Man-Lip-Se (b)
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To investigate the crystalline or amorphous state of en-
capsulated Se within nanoliposomes, we studied diffraction
pattern of sodium selenite, the lyophilized physical mixture
of formulation constituents, lyophilized blank liposomes, and
the lyophilized Man-Lip-Se (Fig. 5). The crystalline or amor-
phous state of drug encapsulated in the nanoparticles needs to
be evaluated in order to ascertain the level and quality of
sodium selenite encapsulation within the hydrophilic core of

the unilamellar nanoliposome. The diffraction patterns of in-
dividual samples of sodium selenite, lyophilized physical com-
ponent mixture, lyophilized P-Man-Lip, and lyophilized Man-
Lip-Se II are shown in Fig. 5. The sodium selenite (Fig. 5a)
and the lyophilized physical mixture (Fig. 5b) of formulation
components showed more crystallinity, whereas the lyophi-
lized P-Man-Lip and Man-Lip-Se II displayed amorphous
properties (Fig. 5c–d).

Fig. 5. Powder XRD patterns of sodium selenite (a), the lyophilized physical mixture of formulation constituents (b), lyophilized
placebo liposomes (c), and Man-Lip-Se (d). Crystallinity can be seen with the lyophilized sodium selenite and the physical mixture,
whereas the lyophilized placebo- and selenium-loaded formulated liposomes display amorphous characteristics. Type: 2Th/Th
locked; Start: 5.000°–End: 39.996°; Step: 0.010°; Step time: 96 s; Temp: 25°C (Room); Time started: 4 s; 2-Theta: 5.000°–Theta: 2.500°

Fig. 6. Targeted Delivery of Se to the Immune System. (I) Administration of Man-Lip-Se; (II) design of
Man-Lip-Se; and (III) Se delivery to immune system using Man-Lip-Se; (a) Absorption of Se through the
lymph pool due to lipidic NCs; and (b) selective interaction of Man-Lip-Se with mannose receptors present
on the M cells resulting in efficient Se transport to immune system
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The diffraction pattern of sodium selenite (Fig. 5a)
showed remarkable difference from those of Man-Lip-Se II
(Fig. 5d). The sharp peaks of Se indicating the crystalline
nature were not present in the diffraction pattern of Man-
Lip-Se II indicating that encapsulated Se is amorphous or
molecular dispersion form. Also, there was a small difference
in the diffraction patterns of the placebo Man-Lip (P-Man-
Lip), and Man-Lip-Se II, indicating that the encapsulated of
Se and/or coating of Man has not changed the nature of
liposomes. XRD patterns of the P-Man-Lip and Man-Lip-Se
II were broader and much weaker than that of the physical
mixture indicating the less ordered or loosely arranged struc-
ture of nanoliposomes. As Hancock and Zografi reported, the
crystalline to amorphous transition of a solid state form is
advantageous for dissolution enhancement because an amor-
phous drug material does not require the energy to overcome
the crystalline lattice (99).

Lectin surface-modified particulates have the opportunity
to specifically interact with the apical membrane of M cells
(100,101). Mannosamine is a positively charged mucoadhesive
and found to enhance uptake through M cells within Peyer's
patches due to interaction with mannose receptors expressed on
the gutmucosa and lymphoid tissue (62,102).M cells have a high
transcytotic capacity, making them able to transport many ma-
terials and particulates. Therefore, they are a potential gateway
for the delivery of drugs, vaccines, and other biologics
(33,103,104). The coating of mannosamine on the surface of
the Se-loaded nanoliposomes will serve as mucoadhesive and
ligand for mannose receptor loaded on M cells. We have
established a murine model of asthma in our laboratory to
evaluate the efficacy of anti-asthmatic therapies (23). Our on-
going studies are focused to investigate the evaluation of phar-
macokinetic parameters in Balb/c mice and testing of Man-Lip-
Se on an asthma animal model to confirm the enhanced in vivo
efficacy of prepared targeted formulation of Se compared to an
orally administeredLip-Se and Se solution.Our previous studies
found that the Se dose of 4 μg of Se/daywas found to be effective
in alleviating asthma (23,105).We plan to use Se equivalent oral
dose of 2 and 4 μg administered twice per week to evaluate the
anti-asthmatic efficacy of nanoliposomes and conventional sup-
plement for our future mouse model studies. We outlined our
proposed targeted delivery approach to the immune system in
Fig. 6. Themannosylated nanoliposomal formulation developed
by us will help to enhance the lymphatic absorption of Se viaM
cell targeted mucoadhesive lipid nanoliposomes to exert the
desired effects. This novel use of nanoliposomal delivery of Se
may provide a means by which Se may be selectively delivered
to the target site. This approach may also help to reduce the
required dose of Selenium, thereby reducing the associated
adverse side effects to normal tissues.

CONCLUSION

Mannosylated Se-loaded nanoliposomes comprising of
DSPG, DPPC, and Chol were successfully prepared using thin
film hydration technique. The particle size, zeta potential, and
entrapment efficiency of the optimum Man-Lip-Se was 158±
2.89 nm, 33.21±0.89 mV, and 77.27±2.34%, respectively. The
size, zeta potential, and mannosamine assay suggested the suc-
cessfully coating of mannosamine on the surface of Se-loaded
nanoliposomes. The M receptor uptake studies performed

utilizing MH-S mouse alveolar macrophages revealed that a
mannosamine concentration of 0.1%w/v reached a saturation
effect. TheMan-Lip-Sewas able to release the Se in a controlled
manner for a prolonged period of time in the physiologically
relevant dissolution medium. DSC and XRD studies demon-
strated a clear difference between the Man-Lip-Se and the
physical mixture, which is indicated the association encapsulated
Se at molecular dispersion form within developed Man-Lip-Se.
This investigation explored the formulation and evaluation of
targeted mannosylated Se-loaded nanoliposomes with a vision
of shunting Se to the immune system for enhanced anti-asth-
matic effect and lowered adverse side effects.
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